

Overview of Village Power and Lessons Learned

Dr. Debra Lew
US National Renewable Energy
Laboratory
December 6, 2002

Why AC Hybrid Village Power Systems?

- Higher Power Motor Loads
 - Refrigeration, grain grinding, carpentry
- Higher Renewable Energy Availability
 - Hybrids reduce daily & seasonal resource variations
- Lower Cost of Energy
 - Resource diversity minimizes battery size and fuel use
- Higher "Quality" of Service (maybe 24 hour)
 - For productive uses/income generation during the day
- Existing Diesel & Distribution System Investment

Renewable resources may complement each other

Wind and solar resource in Inner Mongolia

Lower cost of energy

- PV is easiest but expensive, so offsetting PV capacity with additional wind capacity or diesel backup can reduce cost
 - PV costs approx. \$4-5/W
 - Wind turbines cost approx. \$1-2/W
 - Diesel generators cost approx. \$0.5-0.9/W
- Batteries are expensive and easily damaged, so diesel backup can provide reliability and reduce cost
- Fuel can be expensive in remote areas, so limiting diesel run time can reduce cost

Hybrid Power System Examples: "Communications"

International Experiences

- There is already much experience with village power systems in China and around the world.
- Many of these have failed.
- The key reasons for failure are often institutional and not technical.
- It is most important to design the village power program with key sustainability issues in mind.

Lessons Learned Xcalac, Mexico

NREL International experiences and lessons learned

• Maintenance and repair

- A maintenance support infrastructure must be established and nurtured from the very beginning of a project.
- Repairing equipment in remote locations is difficult and expensive. In pilot projects, robustness and reliability are more important than energy conversion efficiency.

Hybrid systems

- The industry is sparse and immature -- resulting in high prices, costly implementation and support, and rapidly evolving designs.
- Electronic controls and converters are the least robust component, therefore development of an electronic service capacity is important.
- It is often more economical to install a new, appropriately sized diesel than to use the existing, oversized, poorly maintained one.

Sustainability and replication

- The transition from the pilot phase to commercial replication can be difficult. The more the pilot project can be set up to look and act like a business, the easier the transition.
- Single projects in remote locations are not sustainable. Multiple systems in a region are required to develop and sustain the necessary support infrastructure.

Lessons Learned - Keys to Commercial Success

Technology

- 25 years of research
- manufacturing expansion

In-Country

Marketing
Distribution
Sales/Financing
Service
Maintenance
Revenue collection
INFRASTRUCTURE

Billions
Cost-Effective
Applications

Financing

- -IFC
- -Solar Development Group
- -World Bank loans
- UNDP development assistance
- GEF environmental buy-downs
- -Bilateral donors and banks
- -Foundations
- Private Investors
- Country \$\$

Joint Ventures

Integrated Applications
Products

Training Standards

A large enough quantity of equipment, in a small enough area, to reach the cash flow needed for local business viability.

System Design and Options Analysis

System Design Methodology

- Resource assessment is critical
 - Wind data from meteorological stations is often inaccurate
 - Power output from wind turbine is very sensitive to wind speed: 6 m/s wind will produce 72% more power than 5 m/s wind. This can result in significantly lower cost.

Renewable Resource Options: Solar

Renewable Resource Options: Hydro

Renewable Resource Options: Biomass

Options Analysis is critical

- Least-cost solutions –
 would a hybrid system
 or diesel backup help
 reduce the cost?
 - Batteries are expensive to replace and easily damaged
 - PV is expensive
- What are costs of maintenance, repair, fuel, replacement?
- Is there significant excess energy?

HOMER software model: Options Analysis

\$0.60/liter

Village Power Hybrids Hybrid2 and HOMER Models

VIPOR model for distribution system

Stand-alone, village, or grid extension?

Integration of Resource, T&D, and Technology Options Analysis

Automated siting knowing resource availability, T&D investments and constraints

Tariffs and load management

Village systems often fail because of tariff and load management issues

- Xcalac, Mexico hybrid system no tariffs, overloaded with refrigerators
- PV village systems in Gansu and Tibet villagers did not obey instructions to limit use
- Micro-hydro systems in Thailand with meters during peak hours, power systems crash from overuse
 - In this case, circuit breakers that limit power consumption at any one time would be better for load management
 - This would limit each household to a fixed amount of power so that the system does not crash during peak hours
- A village power system with incandescent lights or conventional refrigerators is a failure waiting to happen

Tariff structure have large impacts

- San Juanico, Mexico wind/PV/dsl system
- Tariff structure hindered commercial use of electricity
 - Residential charge was 27RMB + 1.3 RMB/kWh
 - Commercial charge was 46RMB + 2.2 RMB/kWh
- Lack of financing for efficient appliances, so some restaurants could not afford to use refrigerators
- Lack of information about efficiency, so villagers bought inefficient appliances

Tariff Structures

- Should be based on technology used
- The value of the first increment of power is *much* greater than the cost.
- Can use a two-part tariff
 - For low demand users, small RMB/kWh charge
 - For high demand users, larger RMB/kWh charge
 - This ensures most of subsidy goes to the poor
 - This encourages energy efficiency
 - This helps recover costs for system O&M and also system expansion in the future
- Can ration use with circuit breakers
- Prepay meters
 - Eliminate collection risk
 - Simplify administration
 - Most commodities are purchased in this way

Productive Uses/Income Generation

How can renewable energy help alleviate poverty in rural areas?

- Rural electrification programs use renewable energy mostly to provide social welfare benefits such as lighting for education or television for entertainment, etc.
- That's good but not enough.
- And in many cases, these systems only add to the debt burden of end-users and do not increase economic development.

Microenterprise Productive Uses Income Generation

• Small businesses, or microenterprises, can benefit from access to even small amounts of electricity such as the

output of a solar home system:

- Extended operating hours
- Attract customers
- Communications
- Education
- Improved working conditions

- Larger amounts of electricity, such as AC power from hybrid systems, can power additional productive uses:
 - Mechanization/automation mills, drills, pumps, etc.
 - Preserve products refrigeration, ice, etc.

Electricity by itself does not increase economic development!

- Enabling conditions include:
 - Reliable and affordable electricity
 - Availability of tools and machines for productive applications
 - Financing for applications/tools/machines and working capital
 - Capacity building both for technical and business challenges
 - Market for increased quality and production

PV Electronic Repair Shop

- Repair of TV, radio, cassette player, lights, etc.
- 34W PV solar system
 - 2 x 7W lamps
 - 1 DC soldering iron
 - 2900 RMB
 - 25% down; 75% over next 2 yrs at 8% interest rate
- Use of lamps 4hrs/day; use of soldering iron 6 hrs/day
- Benefits:
 - Increased income with electric soldering iron
 - Extended hours of shop
 - Increased income of 200 RMB/day
 - Better working environment

Global Village Energy Partnership

Village Power Program

- Website
- Online project database with 140 projects from 30 countries
- Renewable energy guidebooks
 - Microenterprise
 - Rural health clinics
 - Rural Schools
- Newsletters
- Village Power Conferences

Global Village Energy Partnership

- Aims to reduce poverty and enhance economic & social development for millions around the world
- Objectives:
 - Catalyze country commitments to energy-poverty reduction
 - Bridge the gap between investors, suppliers & users
 - Facilitate policy and regulatory frameworks for scale-up
 - Serve as a marketplace for lessons learned, best practices
 - Create and maintain effective coordination mechanisms
- 10 Year Partner Based Program:
 - Significant number of countries with energy-poverty reduction programs
 - − >400 M people unserved with energy access
 - >50,000 new communities served
 - Cadre of trained entrepreneurs
 - Increases in productivity, income, environment, quality of life

GVEP Products and Services

Action Plans

Political Commitment Policy Framework Multi-sector Demand Assessment

Capacity Development

Entrepreneurial Services Consumer Organization Support Cross Sector Linkages

Financing Facilitation

Info on Funding Sources, Seed Capital Local Banker & Micro Credit Training Funding Mobilization and Access

<mark>Knowledge Management</mark>

Data Bases: Partners, TA sources, Best Practices, Lessons Learned, Dissemination: website, toolkits, radio Info Exchange: TA, workshops

Results and Impact
Monitoring & Evaluation

Information on Contribution to Service Delivery for Health, Water, Schools, SMEs, Agriculture, Households

Contact information

- Debra Lew
 - Tel +1 303 384 7522; fax +1 303 384 7419
 - dlew@nrel.gov
- GVEP website:
 - http://www.gvep.org
- NREL Village Power website:
 - project database, 3 guidebooks, analytic tools
 - <u>http://rsvp.nrel.gov</u>
 - HOMER software can be downloaded free at:
 - <u>http://analysis.nrel.gov/homer</u>